Federated AI Governance 2025: Multi-Organization MLOps Scaling Guide
Scale AI governance across multiple teams and organizations using federated policy frameworks. Covers multi-tenant architectures, distributed compliance, cross-org coordination, and governance-as-a-service patterns.
What You'll Learn
📋 Prerequisites
- Experience with AI governance policies and compliance frameworks.
- Understanding of multi-tenant architectures and distributed systems.
- Familiarity with policy-as-code and infrastructure automation.
- Knowledge of organizational structure and cross-team coordination.
🎯 What You'll Learn
- How to design federated AI governance architectures for multi-organization scaling.
- Techniques for implementing governance-as-a-service across distributed teams.
- How to coordinate AI policies while maintaining team autonomy and innovation speed.
- Patterns for cross-organizational compliance and audit trail management.
- Strategies for federated model registries, policy synchronization, and multi-cloud governance.
🏷️ Topics Covered
💡 From Centralized Control to Federated Collaboration
Traditional AI governance uses centralized teams and rigid policies that slow innovation and create bottlenecks. Federated AI governance enables autonomous teams to innovate while maintaining consistent standards through distributed policy frameworks and collaborative governance patterns.
Federated AI Governance Architecture: Multi-Tenant Policy Framework
Modern federated governance enables autonomous teams while ensuring consistent compliance and coordination across organizational boundaries.
1️⃣ Governance-as-a-Service
Centralized policy engine providing governance capabilities as shared services to distributed teams.
2️⃣ Distributed Policy Coordination
Synchronized policy distribution with local customization and cross-organization compliance tracking.
3️⃣ Federated Model Registry
Multi-tenant model registry with organization-specific access controls and cross-org model sharing.
How to Implement Governance-as-a-Service for Distributed Teams
Build a centralized governance platform that provides policy services to autonomous teams while maintaining consistency.
Example: Federated Governance Platform Architecture
This implementation provides governance APIs that teams can consume for automated compliance.
🏗️ Python: Federated Governance Service Platform
from fastapi import FastAPI, HTTPException, Depends, BackgroundTasks
from pydantic import BaseModel, Field
from typing import Dict, List, Optional, Any
import asyncio
import uuid
from datetime import datetime, timedelta
from enum import Enum
import httpx
import hashlib
import json
app = FastAPI(title="Federated AI Governance Platform", version="2.0.0")
class OrganizationTier(str, Enum):
ENTERPRISE = "enterprise"
BUSINESS = "business"
RESEARCH = "research"
STARTUP = "startup"
class PolicyScope(str, Enum):
GLOBAL = "global"
REGIONAL = "regional"
ORGANIZATIONAL = "organizational"
TEAM = "team"
class GovernanceRequest(BaseModel):
model_id: str
organization_id: str
team_id: str
model_metadata: Dict[str, Any]
deployment_context: Dict[str, Any]
requested_permissions: List[str] = []
class PolicyOverride(BaseModel):
policy_id: str
override_reason: str
approver_id: str
expiry_date: Optional[datetime] = None
class FederatedGovernanceService:
def __init__(self):
self.organizations = {}
self.policies = {}
self.audit_log = []
self.policy_subscriptions = {}
async def register_organization(self, org_config: dict) -> str:
"""Register a new organization in the federation"""
org_id = str(uuid.uuid4())
# Initialize organization configuration
self.organizations[org_id] = {
"id": org_id,
"name": org_config["name"],
"tier": org_config["tier"],
"region": org_config["region"],
"governance_endpoint": org_config.get("governance_endpoint"),
"policy_preferences": org_config.get("policy_preferences", {}),
"teams": {},
"compliance_frameworks": org_config.get("compliance_frameworks", []),
"created_at": datetime.now(),
"last_sync": datetime.now()
}
# Set up default policies based on tier
await self._provision_default_policies(org_id)
return org_id
async def _provision_default_policies(self, org_id: str):
"""Provision default policies based on organization tier"""
org = self.organizations[org_id]
tier = org["tier"]
default_policies = {
OrganizationTier.ENTERPRISE: [
"strict_data_privacy", "advanced_bias_detection",
"comprehensive_audit", "multi_region_compliance"
],
OrganizationTier.BUSINESS: [
"standard_data_privacy", "basic_bias_detection",
"standard_audit", "regional_compliance"
],
OrganizationTier.RESEARCH: [
"flexible_data_privacy", "research_bias_detection",
"collaborative_audit", "academic_compliance"
],
OrganizationTier.STARTUP: [
"basic_data_privacy", "simple_bias_detection",
"lightweight_audit", "startup_compliance"
]
}
# Apply tier-specific policies
for policy_name in default_policies[tier]:
await self._subscribe_organization_to_policy(org_id, policy_name)
async def evaluate_governance_request(self, request: GovernanceRequest) -> Dict[str, Any]:
"""Evaluate a governance request from a federated team"""
start_time = datetime.now()
# Get organization context
org = self.organizations.get(request.organization_id)
if not org:
raise HTTPException(status_code=404, detail="Organization not found")
# Collect applicable policies
applicable_policies = await self._get_applicable_policies(
request.organization_id,
request.team_id,
request.deployment_context
)
# Evaluate each policy
evaluation_results = []
overall_decision = "approved"
for policy in applicable_policies:
result = await self._evaluate_policy(policy, request)
evaluation_results.append(result)
if result["decision"] == "denied":
overall_decision = "denied"
elif result["decision"] == "conditional" and overall_decision != "denied":
overall_decision = "conditional"
# Generate governance decision
governance_decision = {
"request_id": str(uuid.uuid4()),
"organization_id": request.organization_id,
"team_id": request.team_id,
"model_id": request.model_id,
"decision": overall_decision,
"policy_evaluations": evaluation_results,
"conditions": self._extract_conditions(evaluation_results),
"audit_requirements": self._extract_audit_requirements(evaluation_results),
"evaluated_at": start_time,
"evaluation_duration": (datetime.now() - start_time).total_seconds(),
"expires_at": datetime.now() + timedelta(hours=24)
}
# Log audit trail
await self._log_governance_decision(governance_decision)
return governance_decision
async def _get_applicable_policies(self, org_id: str, team_id: str, context: Dict) -> List[Dict]:
"""Get all policies applicable to this request"""
applicable_policies = []
# Global policies (apply to everyone)
global_policies = [p for p in self.policies.values() if p["scope"] == PolicyScope.GLOBAL]
applicable_policies.extend(global_policies)
# Regional policies
org = self.organizations[org_id]
regional_policies = [
p for p in self.policies.values()
if p["scope"] == PolicyScope.REGIONAL and p["region"] == org["region"]
]
applicable_policies.extend(regional_policies)
# Organization-specific policies
org_policies = [
p for p in self.policies.values()
if p["scope"] == PolicyScope.ORGANIZATIONAL and org_id in p["applicable_orgs"]
]
applicable_policies.extend(org_policies)
# Team-specific policies
team_policies = [
p for p in self.policies.values()
if p["scope"] == PolicyScope.TEAM and team_id in p["applicable_teams"]
]
applicable_policies.extend(team_policies)
return applicable_policies
async def _evaluate_policy(self, policy: Dict, request: GovernanceRequest) -> Dict[str, Any]:
"""Evaluate a single policy against the request"""
policy_id = policy["id"]
policy_type = policy["type"]
# Route to appropriate policy evaluator
if policy_type == "data_privacy":
return await self._evaluate_data_privacy_policy(policy, request)
elif policy_type == "bias_detection":
return await self._evaluate_bias_policy(policy, request)
elif policy_type == "compliance":
return await self._evaluate_compliance_policy(policy, request)
elif policy_type == "performance":
return await self._evaluate_performance_policy(policy, request)
else:
return {
"policy_id": policy_id,
"policy_name": policy["name"],
"decision": "approved",
"reason": "Unknown policy type, defaulting to approved",
"conditions": []
}
async def _evaluate_data_privacy_policy(self, policy: Dict, request: GovernanceRequest) -> Dict:
"""Evaluate data privacy policies"""
model_metadata = request.model_metadata
# Check for PII in training data
has_pii = model_metadata.get("training_data", {}).get("contains_pii", False)
anonymization_method = model_metadata.get("training_data", {}).get("anonymization_method")
# Check consent tracking
consent_tracked = model_metadata.get("training_data", {}).get("consent_tracked", False)
if has_pii and not anonymization_method:
return {
"policy_id": policy["id"],
"policy_name": policy["name"],
"decision": "denied",
"reason": "PII detected without anonymization",
"conditions": ["Implement data anonymization before deployment"]
}
conditions = []
if has_pii and not consent_tracked:
conditions.append("Implement consent tracking for PII usage")
return {
"policy_id": policy["id"],
"policy_name": policy["name"],
"decision": "conditional" if conditions else "approved",
"reason": "Data privacy requirements evaluated",
"conditions": conditions
}
async def _evaluate_bias_policy(self, policy: Dict, request: GovernanceRequest) -> Dict:
"""Evaluate bias detection policies"""
fairness_metrics = request.model_metadata.get("fairness_metrics", {})
# Check if bias testing was performed
if not fairness_metrics:
return {
"policy_id": policy["id"],
"policy_name": policy["name"],
"decision": "denied",
"reason": "No bias testing performed",
"conditions": ["Perform bias testing before deployment"]
}
# Check bias thresholds based on policy strictness
strictness = policy.get("strictness", "standard")
thresholds = {
"strict": {"demographic_parity": 0.05, "equalized_odds": 0.05},
"standard": {"demographic_parity": 0.10, "equalized_odds": 0.10},
"flexible": {"demographic_parity": 0.15, "equalized_odds": 0.15}
}
current_thresholds = thresholds[strictness]
violations = []
for metric, threshold in current_thresholds.items():
if metric in fairness_metrics:
if abs(fairness_metrics[metric]) > threshold:
violations.append(f"{metric}: {fairness_metrics[metric]} > {threshold}")
if violations:
return {
"policy_id": policy["id"],
"policy_name": policy["name"],
"decision": "denied",
"reason": f"Bias thresholds exceeded: {', '.join(violations)}",
"conditions": ["Address bias issues before deployment"]
}
return {
"policy_id": policy["id"],
"policy_name": policy["name"],
"decision": "approved",
"reason": "Bias testing passed",
"conditions": []
}
async def synchronize_policies_across_federation(self):
"""Synchronize policies across all federated organizations"""
for org_id, org in self.organizations.items():
if org.get("governance_endpoint"):
try:
await self._sync_policies_with_organization(org_id)
except Exception as e:
print(f"Failed to sync with organization {org_id}: {e}")
async def _sync_policies_with_organization(self, org_id: str):
"""Sync policies with a specific organization"""
org = self.organizations[org_id]
endpoint = org["governance_endpoint"]
# Get organization's subscribed policies
subscribed_policies = [
policy for policy in self.policies.values()
if org_id in policy.get("subscribed_orgs", [])
]
# Send policy updates
async with httpx.AsyncClient() as client:
response = await client.post(
f"{endpoint}/api/v1/policies/sync",
json={
"policies": subscribed_policies,
"sync_timestamp": datetime.now().isoformat(),
"federation_id": "central-governance"
}
)
if response.status_code == 200:
org["last_sync"] = datetime.now()
# FastAPI endpoints
governance_service = FederatedGovernanceService()
@app.post("/api/v1/organizations/register")
async def register_organization(org_config: dict):
"""Register a new organization in the federation"""
org_id = await governance_service.register_organization(org_config)
return {"organization_id": org_id, "status": "registered"}
@app.post("/api/v1/governance/evaluate")
async def evaluate_governance(request: GovernanceRequest):
"""Evaluate a governance request from a federated team"""
decision = await governance_service.evaluate_governance_request(request)
return decision
@app.post("/api/v1/policies/sync")
async def sync_policies(background_tasks: BackgroundTasks):
"""Trigger policy synchronization across federation"""
background_tasks.add_task(governance_service.synchronize_policies_across_federation)
return {"status": "sync_initiated"}
@app.get("/api/v1/organizations/{org_id}/compliance-status")
async def get_compliance_status(org_id: str):
"""Get compliance status for an organization"""
if org_id not in governance_service.organizations:
raise HTTPException(status_code=404, detail="Organization not found")
# Calculate compliance metrics
org = governance_service.organizations[org_id]
return {
"organization_id": org_id,
"compliance_score": 0.95, # Calculated from audit logs
"active_policies": 12,
"violations_last_30_days": 2,
"last_audit": org["last_sync"].isoformat(),
"status": "compliant"
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)Example: Team Integration with Governance Service
How autonomous teams integrate with the federated governance platform for automated compliance.
🔧 Python: Team Governance Integration SDK
import httpx
import asyncio
from typing import Dict, List, Optional
from dataclasses import dataclass
from datetime import datetime
import os
@dataclass
class TeamConfig:
organization_id: str
team_id: str
governance_endpoint: str
api_key: str
compliance_level: str = "standard"
class FederatedGovernanceClient:
def __init__(self, config: TeamConfig):
self.config = config
self.session = httpx.AsyncClient(
headers={
"Authorization": f"Bearer {config.api_key}",
"Content-Type": "application/json"
}
)
async def request_model_deployment_approval(self,
model_metadata: Dict,
deployment_context: Dict) -> Dict:
"""Request approval for model deployment through federated governance"""
governance_request = {
"model_id": model_metadata["id"],
"organization_id": self.config.organization_id,
"team_id": self.config.team_id,
"model_metadata": model_metadata,
"deployment_context": deployment_context,
"requested_permissions": deployment_context.get("permissions", [])
}
response = await self.session.post(
f"{self.config.governance_endpoint}/api/v1/governance/evaluate",
json=governance_request
)
if response.status_code != 200:
raise Exception(f"Governance evaluation failed: {response.text}")
decision = response.json()
# Handle governance decision
if decision["decision"] == "approved":
print(f"✅ Model {model_metadata['id']} approved for deployment")
return decision
elif decision["decision"] == "conditional":
print(f"⚠️ Model {model_metadata['id']} conditionally approved")
print("Conditions to meet:")
for condition in decision["conditions"]:
print(f" - {condition}")
return decision
else:
print(f"❌ Model {model_metadata['id']} deployment denied")
print("Reasons:")
for eval_result in decision["policy_evaluations"]:
if eval_result["decision"] == "denied":
print(f" - {eval_result['policy_name']}: {eval_result['reason']}")
raise Exception("Model deployment denied by governance policies")
async def get_team_compliance_dashboard(self) -> Dict:
"""Get compliance dashboard data for the team"""
response = await self.session.get(
f"{self.config.governance_endpoint}/api/v1/organizations/{self.config.organization_id}/compliance-status"
)
if response.status_code != 200:
raise Exception(f"Failed to get compliance status: {response.text}")
return response.json()
async def register_model_with_governance(self, model_metadata: Dict) -> str:
"""Register a model with the federated governance system"""
registration_data = {
"model_metadata": model_metadata,
"organization_id": self.config.organization_id,
"team_id": self.config.team_id,
"registration_timestamp": datetime.now().isoformat()
}
response = await self.session.post(
f"{self.config.governance_endpoint}/api/v1/models/register",
json=registration_data
)
if response.status_code != 200:
raise Exception(f"Model registration failed: {response.text}")
result = response.json()
return result["model_governance_id"]
# Example usage in ML team's deployment pipeline
class MLTeamDeploymentPipeline:
def __init__(self, governance_client: FederatedGovernanceClient):
self.governance = governance_client
async def deploy_model(self, model_path: str, deployment_config: Dict):
"""Deploy model with federated governance integration"""
# 1. Load model metadata
model_metadata = await self._extract_model_metadata(model_path)
# 2. Register model with governance system
governance_id = await self.governance.register_model_with_governance(model_metadata)
print(f"Model registered with governance ID: {governance_id}")
# 3. Request deployment approval
deployment_context = {
"environment": deployment_config["environment"],
"region": deployment_config["region"],
"expected_traffic": deployment_config["expected_traffic"],
"data_sources": deployment_config["data_sources"],
"permissions": ["read_user_data", "write_predictions"]
}
try:
approval = await self.governance.request_model_deployment_approval(
model_metadata, deployment_context
)
# 4. Deploy based on governance decision
if approval["decision"] == "approved":
await self._deploy_model_approved(model_path, deployment_config, approval)
elif approval["decision"] == "conditional":
await self._deploy_model_conditional(model_path, deployment_config, approval)
except Exception as e:
print(f"Deployment failed due to governance: {e}")
return False
return True
async def _extract_model_metadata(self, model_path: str) -> Dict:
"""Extract comprehensive metadata from model"""
# This would integrate with your model registry/MLflow
return {
"id": f"fraud-detection-v2.1.0",
"name": "fraud-detection",
"version": "2.1.0",
"algorithm": "gradient_boosting",
"training_data": {
"size": 1000000,
"contains_pii": True,
"anonymization_method": "k_anonymity",
"consent_tracked": True,
"data_sources": ["transactions", "user_profiles"]
},
"performance_metrics": {
"accuracy": 0.94,
"precision": 0.91,
"recall": 0.89,
"f1_score": 0.90
},
"fairness_metrics": {
"demographic_parity": 0.08,
"equalized_odds": 0.06,
"protected_attributes": ["age", "gender", "geography"]
},
"model_lineage": {
"git_commit": "abc123",
"training_dataset_version": "v2.1",
"feature_store_version": "v1.5"
},
"created_at": datetime.now().isoformat(),
"created_by": "ml-team-fraud"
}
async def _deploy_model_approved(self, model_path: str, config: Dict, approval: Dict):
"""Deploy model after full approval"""
print("🚀 Deploying model with full approval...")
# Standard deployment process
await self._deploy_to_kubernetes(model_path, config)
# Set up monitoring as required by governance
await self._setup_governance_monitoring(approval["audit_requirements"])
async def _deploy_model_conditional(self, model_path: str, config: Dict, approval: Dict):
"""Deploy model with conditional approval"""
print("🔶 Deploying model with conditions...")
# Deploy with additional safeguards
config["enable_shadow_mode"] = True
config["max_traffic_percentage"] = 10 # Limited traffic
await self._deploy_to_kubernetes(model_path, config)
# Enhanced monitoring for conditional deployment
await self._setup_enhanced_monitoring(approval["conditions"])
# Schedule review after conditions are met
await self._schedule_governance_review(approval["request_id"])
# Example configuration and usage
async def main():
# Configure team's governance integration
team_config = TeamConfig(
organization_id=os.getenv("ORG_ID"),
team_id="ml-fraud-detection",
governance_endpoint=os.getenv("GOVERNANCE_ENDPOINT"),
api_key=os.getenv("GOVERNANCE_API_KEY"),
compliance_level="enterprise"
)
# Initialize governance client
governance_client = FederatedGovernanceClient(team_config)
# Set up deployment pipeline
pipeline = MLTeamDeploymentPipeline(governance_client)
# Deploy model through federated governance
deployment_config = {
"environment": "production",
"region": "us-west-2",
"expected_traffic": 1000,
"data_sources": ["transaction_db", "user_profile_api"]
}
success = await pipeline.deploy_model("./fraud_model_v2.pkl", deployment_config)
print(f"Deployment {'successful' if success else 'failed'}")
if __name__ == "__main__":
asyncio.run(main())Cross-Organization Policy Coordination and Synchronization
Implement distributed policy coordination that enables organizations to collaborate while maintaining autonomy.
Policy Federation Patterns
Establish hierarchical policy inheritance where global standards cascade to regional and local customizations, enabling consistency with flexibility.
Cross-Org Audit Trails
Implement distributed audit logging that provides visibility across organizational boundaries while respecting data sovereignty and privacy requirements.
Collaborative Compliance
Enable shared compliance frameworks where multiple organizations can collectively meet regulatory requirements through coordinated governance efforts.
Example: Multi-Organization Policy Synchronization
🌐 YAML: Federated Policy Distribution System
# federated-policy-sync.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: federated-policy-config
namespace: governance
data:
federation-config.yaml: |
federation:
id: "ai-governance-federation"
name: "Global AI Governance Federation"
organizations:
- id: "corp-hq"
name: "Corporate Headquarters"
tier: "enterprise"
region: "global"
governance_endpoint: "https://hq-governance.corp.com"
policy_authority: "global"
- id: "corp-eu"
name: "European Division"
tier: "enterprise"
region: "eu"
governance_endpoint: "https://eu-governance.corp.com"
policy_authority: "regional"
parent_org: "corp-hq"
- id: "corp-apac"
name: "Asia Pacific Division"
tier: "enterprise"
region: "apac"
governance_endpoint: "https://apac-governance.corp.com"
policy_authority: "regional"
parent_org: "corp-hq"
- id: "startup-partner"
name: "AI Startup Partner"
tier: "startup"
region: "us"
governance_endpoint: "https://governance.ai-startup.com"
policy_authority: "local"
partnership_type: "vendor"
policy_hierarchy:
global:
- "data_protection_framework"
- "ai_ethics_standards"
- "security_baseline"
- "audit_requirements"
regional:
eu:
- "gdpr_compliance"
- "eu_ai_act_compliance"
- "data_residency_eu"
apac:
- "apac_data_privacy"
- "cross_border_data_transfer"
us:
- "ccpa_compliance"
- "sector_specific_regulations"
organizational:
corp-hq:
- "enterprise_model_approval"
- "ip_protection_advanced"
startup-partner:
- "startup_compliance_lite"
- "innovation_fast_track"
sync_configuration:
sync_interval: "1h"
batch_size: 50
retry_policy:
max_retries: 3
backoff_multiplier: 2
max_backoff: "5m"
conflict_resolution:
strategy: "hierarchical" # global > regional > local
require_approval: true
approval_timeout: "24h"
audit_configuration:
cross_org_audit: true
audit_retention: "7y"
audit_encryption: true
audit_endpoints:
- "https://audit.corp.com/federation"
- "https://compliance-archive.corp.com"
---
apiVersion: batch/v1
kind: CronJob
metadata:
name: federated-policy-sync
namespace: governance
spec:
schedule: "0 */1 * * *" # Every hour
jobTemplate:
spec:
template:
spec:
containers:
- name: policy-sync
image: federated-governance:latest
command:
- python
- -c
- |
import asyncio
import aiohttp
import yaml
from typing import Dict, List
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class FederatedPolicySync:
def __init__(self, config_path: str):
with open(config_path, 'r') as f:
self.config = yaml.safe_load(f)
self.session = None
async def sync_federation_policies(self):
"""Synchronize policies across all organizations in federation"""
async with aiohttp.ClientSession() as session:
self.session = session
# Get all organizations in federation
orgs = self.config['organizations']
# Sync policies hierarchically
await self._sync_global_policies(orgs)
await self._sync_regional_policies(orgs)
await self._sync_organizational_policies(orgs)
# Validate federation consistency
await self._validate_federation_consistency(orgs)
async def _sync_global_policies(self, orgs: List[Dict]):
"""Sync global policies to all organizations"""
global_policies = self.config['policy_hierarchy']['global']
for org in orgs:
try:
logger.info(f"Syncing global policies to {org['name']}")
# Get current policies from central authority
policies = await self._fetch_policies(global_policies, 'global')
# Push to organization
await self._push_policies_to_org(org, policies, 'global')
except Exception as e:
logger.error(f"Failed to sync global policies to {org['id']}: {e}")
async def _sync_regional_policies(self, orgs: List[Dict]):
"""Sync regional policies to organizations in each region"""
regional_policies = self.config['policy_hierarchy'].get('regional', {})
for region, policies in regional_policies.items():
region_orgs = [org for org in orgs if org['region'] == region]
for org in region_orgs:
try:
logger.info(f"Syncing {region} policies to {org['name']}")
# Get regional policies
policy_data = await self._fetch_policies(policies, region)
# Push to organization
await self._push_policies_to_org(org, policy_data, 'regional')
except Exception as e:
logger.error(f"Failed to sync regional policies to {org['id']}: {e}")
async def _push_policies_to_org(self, org: Dict, policies: List, scope: str):
"""Push policies to an organization's governance endpoint"""
endpoint = org['governance_endpoint']
payload = {
'policies': policies,
'scope': scope,
'federation_id': self.config['federation']['id'],
'sync_timestamp': datetime.now().isoformat(),
'source_authority': 'federation-sync'
}
async with self.session.post(
f"{endpoint}/api/v1/policies/federation-sync",
json=payload,
timeout=30
) as response:
if response.status == 200:
result = await response.json()
logger.info(f"Successfully synced {len(policies)} policies to {org['name']}")
return result
else:
raise Exception(f"Sync failed with status {response.status}")
async def _validate_federation_consistency(self, orgs: List[Dict]):
"""Validate that all organizations have consistent policy versions"""
logger.info("Validating federation consistency...")
consistency_report = {
'federation_id': self.config['federation']['id'],
'validation_timestamp': datetime.now().isoformat(),
'organizations': [],
'inconsistencies': []
}
for org in orgs:
try:
# Get organization's policy versions
async with self.session.get(
f"{org['governance_endpoint']}/api/v1/policies/versions"
) as response:
if response.status == 200:
org_policies = await response.json()
consistency_report['organizations'].append({
'org_id': org['id'],
'policy_versions': org_policies,
'last_sync': org_policies.get('last_sync')
})
except Exception as e:
logger.warning(f"Could not validate {org['name']}: {e}")
# Report to federation audit system
await self._report_consistency_status(consistency_report)
# Execute sync
async def main():
syncer = FederatedPolicySync('/config/federation-config.yaml')
await syncer.sync_federation_policies()
asyncio.run(main())
volumeMounts:
- name: config
mountPath: /config
readOnly: true
volumes:
- name: config
configMap:
name: federated-policy-config
restartPolicy: OnFailure
---
apiVersion: v1
kind: Service
metadata:
name: federation-audit-collector
namespace: governance
spec:
selector:
app: federation-audit
ports:
- port: 8080
targetPort: 8080
type: ClusterIP
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: federation-audit-collector
namespace: governance
spec:
replicas: 2
selector:
matchLabels:
app: federation-audit
template:
metadata:
labels:
app: federation-audit
spec:
containers:
- name: audit-collector
image: federation-audit:latest
ports:
- containerPort: 8080
env:
- name: FEDERATION_ID
value: "ai-governance-federation"
- name: AUDIT_RETENTION_DAYS
value: "2555" # 7 years
- name: ENCRYPTION_KEY
valueFrom:
secretKeyRef:
name: audit-encryption
key: encryption-keyFederated Model Registry: Multi-Tenant AI Asset Management
Build a distributed model registry that enables secure model sharing and governance across organizational boundaries.
Example: Multi-Organization Model Registry Architecture
🗃️ Python: Federated Model Registry Implementation
from fastapi import FastAPI, HTTPException, Depends, Security
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel, Field
from typing import Dict, List, Optional, Set
from enum import Enum
import uuid
from datetime import datetime, timedelta
import hashlib
import asyncio
app = FastAPI(title="Federated Model Registry", version="2.0.0")
security = HTTPBearer()
class AccessLevel(str, Enum):
PUBLIC = "public"
ORGANIZATION = "organization"
CONSORTIUM = "consortium"
PRIVATE = "private"
class ModelStatus(str, Enum):
DEVELOPMENT = "development"
TESTING = "testing"
STAGING = "staging"
PRODUCTION = "production"
DEPRECATED = "deprecated"
class OrganizationTier(str, Enum):
ENTERPRISE = "enterprise"
RESEARCH = "research"
STARTUP = "startup"
ACADEMIC = "academic"
class ModelMetadata(BaseModel):
id: str
name: str
version: str
description: str
organization_id: str
team_id: str
access_level: AccessLevel
status: ModelStatus
model_type: str
framework: str
performance_metrics: Dict[str, float]
fairness_metrics: Optional[Dict[str, float]] = None
training_data_info: Dict[str, any]
deployment_requirements: Dict[str, any]
license_terms: Dict[str, any]
created_at: datetime = Field(default_factory=datetime.now)
updated_at: datetime = Field(default_factory=datetime.now)
tags: List[str] = []
class AccessRequest(BaseModel):
requesting_org_id: str
requesting_team_id: str
model_id: str
access_purpose: str
intended_use: str
duration_days: Optional[int] = 30
data_sharing_terms: Dict[str, any]
class FederatedModelRegistry:
def __init__(self):
self.models = {}
self.organizations = {}
self.access_grants = {}
self.usage_tracking = {}
self.audit_log = []
async def register_organization(self, org_config: Dict) -> str:
"""Register an organization in the federated registry"""
org_id = str(uuid.uuid4())
self.organizations[org_id] = {
"id": org_id,
"name": org_config["name"],
"tier": org_config["tier"],
"region": org_config["region"],
"governance_endpoint": org_config.get("governance_endpoint"),
"model_sharing_policy": org_config.get("model_sharing_policy", {}),
"ip_protection_level": org_config.get("ip_protection_level", "standard"),
"collaboration_agreements": org_config.get("collaboration_agreements", []),
"created_at": datetime.now()
}
return org_id
async def register_model(self, model_metadata: ModelMetadata,
requesting_org: str) -> str:
"""Register a model in the federated registry"""
# Validate organization has permission to register
if not await self._validate_org_permissions(requesting_org, "register_model"):
raise HTTPException(
status_code=403,
detail="Organization not authorized to register models"
)
# Generate unique model ID
model_id = f"{model_metadata.organization_id}_{model_metadata.name}_{model_metadata.version}"
model_hash = hashlib.sha256(model_id.encode()).hexdigest()[:16]
full_model_id = f"{model_id}_{model_hash}"
# Store model metadata
model_record = {
**model_metadata.dict(),
"id": full_model_id,
"federated_id": str(uuid.uuid4()),
"access_history": [],
"usage_stats": {
"download_count": 0,
"organizations_using": [],
"last_accessed": None
},
"governance_status": {
"compliance_verified": False,
"last_audit": None,
"approval_status": "pending"
}
}
self.models[full_model_id] = model_record
# Trigger governance evaluation
await self._trigger_governance_evaluation(full_model_id)
# Log registration
await self._log_audit_event(
"model_registered",
{"model_id": full_model_id, "organization": requesting_org}
)
return full_model_id
async def request_model_access(self, access_request: AccessRequest) -> str:
"""Request access to a model from another organization"""
model = self.models.get(access_request.model_id)
if not model:
raise HTTPException(status_code=404, detail="Model not found")
# Check if model is accessible
if not await self._can_access_model(access_request.requesting_org_id, model):
raise HTTPException(
status_code=403,
detail="Model not accessible to requesting organization"
)
# Generate access request ID
access_request_id = str(uuid.uuid4())
# Store access request
request_record = {
"id": access_request_id,
"model_id": access_request.model_id,
"requesting_org": access_request.requesting_org_id,
"requesting_team": access_request.requesting_team_id,
"model_owner_org": model["organization_id"],
"purpose": access_request.access_purpose,
"intended_use": access_request.intended_use,
"duration_days": access_request.duration_days,
"data_sharing_terms": access_request.data_sharing_terms,
"status": "pending",
"requested_at": datetime.now(),
"expires_at": datetime.now() + timedelta(days=access_request.duration_days or 30)
}
self.access_grants[access_request_id] = request_record
# Auto-approve based on access level and organization relationships
if await self._should_auto_approve(access_request, model):
await self._approve_access_request(access_request_id)
else:
# Send notification to model owner organization
await self._notify_access_request(access_request_id)
return access_request_id
async def _can_access_model(self, requesting_org: str, model: Dict) -> bool:
"""Check if an organization can access a model"""
access_level = model["access_level"]
model_org = model["organization_id"]
# Public models are accessible to all
if access_level == AccessLevel.PUBLIC:
return True
# Private models only to owning organization
if access_level == AccessLevel.PRIVATE:
return requesting_org == model_org
# Organization level - check collaboration agreements
if access_level == AccessLevel.ORGANIZATION:
org = self.organizations.get(requesting_org)
if not org:
return False
model_owner_org = self.organizations.get(model_org)
if not model_owner_org:
return False
# Check if organizations have collaboration agreement
return any(
agreement["partner_org"] == model_org
for agreement in org.get("collaboration_agreements", [])
)
# Consortium level - check consortium membership
if access_level == AccessLevel.CONSORTIUM:
return await self._check_consortium_membership(requesting_org, model_org)
return False
async def _should_auto_approve(self, access_request: AccessRequest, model: Dict) -> bool:
"""Determine if access request should be auto-approved"""
requesting_org = self.organizations.get(access_request.requesting_org_id)
model_owner_org = self.organizations.get(model["organization_id"])
if not requesting_org or not model_owner_org:
return False
# Auto-approve for trusted partners
trusted_partners = model_owner_org.get("trusted_partners", [])
if access_request.requesting_org_id in trusted_partners:
return True
# Auto-approve for research organizations accessing research models
if (requesting_org["tier"] == OrganizationTier.RESEARCH and
model.get("research_use_approved", False)):
return True
# Auto-approve for academic use
if (requesting_org["tier"] == OrganizationTier.ACADEMIC and
model.get("academic_use_approved", False)):
return True
return False
async def search_federated_models(self,
requesting_org: str,
query: Optional[str] = None,
model_type: Optional[str] = None,
framework: Optional[str] = None,
tags: Optional[List[str]] = None) -> List[Dict]:
"""Search for models across the federation"""
accessible_models = []
for model_id, model in self.models.items():
# Check if requesting org can see this model
if not await self._can_access_model(requesting_org, model):
continue
# Apply search filters
if query and query.lower() not in model["name"].lower() and query.lower() not in model["description"].lower():
continue
if model_type and model["model_type"] != model_type:
continue
if framework and model["framework"] != framework:
continue
if tags and not any(tag in model["tags"] for tag in tags):
continue
# Create safe model summary (no sensitive data)
model_summary = {
"id": model["id"],
"name": model["name"],
"version": model["version"],
"description": model["description"],
"organization": self.organizations[model["organization_id"]]["name"],
"model_type": model["model_type"],
"framework": model["framework"],
"access_level": model["access_level"],
"status": model["status"],
"performance_summary": {
"accuracy": model["performance_metrics"].get("accuracy"),
"latency": model["performance_metrics"].get("latency")
},
"tags": model["tags"],
"created_at": model["created_at"],
"usage_stats": {
"download_count": model["usage_stats"]["download_count"],
"organizations_using_count": len(model["usage_stats"]["organizations_using"])
}
}
accessible_models.append(model_summary)
# Sort by relevance and usage
accessible_models.sort(
key=lambda x: (x["usage_stats"]["download_count"], x["created_at"]),
reverse=True
)
return accessible_models
async def track_model_usage(self, model_id: str, using_org: str, usage_type: str):
"""Track model usage for analytics and compliance"""
if model_id not in self.models:
return
usage_record = {
"model_id": model_id,
"using_organization": using_org,
"usage_type": usage_type, # download, inference, training
"timestamp": datetime.now(),
"usage_id": str(uuid.uuid4())
}
# Store usage record
if model_id not in self.usage_tracking:
self.usage_tracking[model_id] = []
self.usage_tracking[model_id].append(usage_record)
# Update model usage stats
model = self.models[model_id]
model["usage_stats"]["last_accessed"] = datetime.now()
if usage_type == "download":
model["usage_stats"]["download_count"] += 1
if using_org not in model["usage_stats"]["organizations_using"]:
model["usage_stats"]["organizations_using"].append(using_org)
# Log for audit
await self._log_audit_event(
"model_usage_tracked",
{"model_id": model_id, "using_org": using_org, "usage_type": usage_type}
)
# FastAPI endpoints
registry = FederatedModelRegistry()
@app.post("/api/v1/models/register")
async def register_model(model: ModelMetadata, credentials: HTTPAuthorizationCredentials = Security(security)):
"""Register a model in the federated registry"""
org_id = await authenticate_organization(credentials.credentials)
model_id = await registry.register_model(model, org_id)
return {"model_id": model_id, "status": "registered"}
@app.post("/api/v1/models/access-request")
async def request_access(access_request: AccessRequest, credentials: HTTPAuthorizationCredentials = Security(security)):
"""Request access to a model"""
await authenticate_organization(credentials.credentials)
request_id = await registry.request_model_access(access_request)
return {"access_request_id": request_id, "status": "submitted"}
@app.get("/api/v1/models/search")
async def search_models(
credentials: HTTPAuthorizationCredentials = Security(security),
query: Optional[str] = None,
model_type: Optional[str] = None,
framework: Optional[str] = None
):
"""Search for accessible models in the federation"""
org_id = await authenticate_organization(credentials.credentials)
models = await registry.search_federated_models(org_id, query, model_type, framework)
return {"models": models, "count": len(models)}
async def authenticate_organization(token: str) -> str:
"""Authenticate organization and return org_id"""
# Implementation would validate JWT token and return org_id
return "authenticated_org_id"
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8001)💡 Federated AI Governance Implementation Best Practices
Design for Autonomy
Enable teams to operate independently while maintaining essential compliance and coordination touchpoints.
Hierarchical Policy Structure
Implement global standards that cascade to regional and local customizations, balancing consistency with flexibility.
API-First Governance
Provide governance capabilities through well-designed APIs that teams can integrate into their existing workflows.
Distributed Audit Trails
Maintain comprehensive audit logs across organizational boundaries while respecting data sovereignty requirements.
Collaborative Compliance
Build frameworks that enable multiple organizations to collectively meet regulatory requirements through coordinated efforts.